目录

1.阶的定义

1.1 构造|us>

1.2 构造受控U

2.求阶步骤

1.阶的定义

阶r的定义是使得x的r次方 mod N=1的最小正整数,其中x和N是互质的,同时1

x的整数倍mod N 可以遍历0~N-1之间所有的整数。

如果我们想要求解r的话,结合相位估计的原理,如果我们可以将阶转换为相位,只需要经过逆傅里叶变换便可以求得阶,但是相位估计是有两大前提条件的,第一个是存在|u>;第2个是受控U是可以实现的。

1.1 构造|us>

order-finding构造的|u>如下(其中整数𝑠(0≤𝑠≤𝑟−1):

|us>存在以下两个非常巧妙的性质:

性质1:

证明如下,直接利用了黄皮书练习5.13的结论:

详细证明步骤:

性质2:

如果要制备|us>需要我们知道r,但是这是不可能的,利用性质2,我们可以回避|us>的制备问题,第二个量子寄存器的输入也不需要是|us>,|1>态作为第二寄存器的输入。

1.2 构造受控U

利用盒子5.2 求模幂,我们希望计算变换(这个讲述的是的实现)

电路图如下:

在这里第二寄存器中的|y>为|1>。

2.求阶步骤

线路如图:

步骤如下:

作为输入态第二个量子寄存器为1,这是因为:

推荐阅读博客《order finding before shor's algorithm》