目录
1.阶的定义
1.1 构造|us>
1.2 构造受控U
2.求阶步骤
1.阶的定义
阶r的定义是使得x的r次方 mod N=1的最小正整数,其中x和N是互质的,同时1 x的整数倍mod N 可以遍历0~N-1之间所有的整数。 如果我们想要求解r的话,结合相位估计的原理,如果我们可以将阶转换为相位,只需要经过逆傅里叶变换便可以求得阶,但是相位估计是有两大前提条件的,第一个是存在|u>;第2个是受控U是可以实现的。 1.1 构造|us> order-finding构造的|u>如下(其中整数𝑠(0≤𝑠≤𝑟−1): |us>存在以下两个非常巧妙的性质: 性质1: 证明如下,直接利用了黄皮书练习5.13的结论: 详细证明步骤: 性质2: 如果要制备|us>需要我们知道r,但是这是不可能的,利用性质2,我们可以回避|us>的制备问题,第二个量子寄存器的输入也不需要是|us>,|1>态作为第二寄存器的输入。 1.2 构造受控U 利用盒子5.2 求模幂,我们希望计算变换(这个讲述的是的实现) 电路图如下: 在这里第二寄存器中的|y>为|1>。 2.求阶步骤 线路如图: 步骤如下: 作为输入态第二个量子寄存器为1,这是因为: 推荐阅读博客《order finding before shor's algorithm》